

Farmers Awareness on the Judicious Use of	"Cercetări Marine"	
Pesticides as a First Step in the Prevention of	Issue no. 46	
Water Pollution in the Black Sea Basin		
(Liliana Panaitescu, Simona-Mariana Pricop,	Pages 167-175	2016
Irina Moise, Daniela Jitariu)		

FARMERS AWARENESS ON THE JUDICIOUS USE OF PESTICIDES AS A FIRST STEP IN THE PREVENTION OF WATER POLLUTION IN THE BLACK SEA BASIN

Liliana Panaitescu*, Simona-Mariana Pricop, Irina Moise, Daniela Jitariu

"Ovidius" University Constanța, Faculty of Natural and Agricultural Sciences 124 Mamaia Boulevard, Constanța, 900527, Romania, *lilipanaitescu@yahoo.com

ABSTRACT

In Romania, water protection against the pollution with sources from agriculture is reglemented by special laws. However, there is a poor dissemination among farmers, those who should be the first awared.

The information disseminated through the on-line means are not always available for all farmers. There are still farmers to whom the linternet acces is slow. In addition, the information existing on specialized sites are often presented with many details, the farmer being discouraged to access them.

We proposed that in the courses taught to the students from the specializations Agriculture and Horticulture - so future farmers, to introduce notions that raise the awareness degree of agricultural workers on the use of pesticides in crop protection against diseases and pests, judicious use of fertilizers or other substances that are commonly used to increase yield per hectare, in agreement with European and international law.

This paper presents the crops with high-risk degree on using pesticides that are possible water pollutants, as well as the measures required to prevent water pollution, both of the surface and groundwater.

Key words: water pollution, pesticides, farmers

MATERIAL AND METHODS

This paper presents the main potentially polluting factors for soil, surface or ground waters. The authors identified the main potentially polluting crops technologies that influence the waters of the Black Sea basin and the main pesticides use in controlling weeds, diseases and pests. There are also presented possible polluting fertilizers used in agriculture.

Experts from the Intergovernmental Panel on climate evolution (GIEC) said in a report that "mankind destroy the nature biological diversity with a speed never seen before " or "every day literally disappearing 150 species of plants and animals". Environmental protection of soil, water and crops, so our daily food is in everyone's attention, specialists or consumers.

In Romania it was implemented a "Code of Good Agricultural Practice". Thus, products used in plant protection are classified into two categories: products from Group III and IV of toxicity (mildly toxic) and products from Group I and II of toxicity (highly toxic and very toxic), used only by specialized and authorized personnel.

	8	· · · · · · · · · · · · · · · · · · ·
Groups of toxicity	Efects	DL50 (mg/kg body)
Ι	Extremely strong	50
П	Highly toxic	50-200
III	Moderately toxic	200-1000
IV	With low toxicity	>1000

Table 1. Pesticides classification in groups of toxicity

* by Good Agricultural Practice Guide

Due to the persistence of high toxicity in animals and humans, some pesticides have been banned by international conventions and by environmental protection legislation.

Examples of prohibited pesticides in Romania and abroad: Aldrin, DDT, Dieldrin (insecticides), Dinasel, Silvex (herbicides), Dibromocloropropan (fumigant).

RESULTS AND DISCUSSIONS

After analysis performed by specialists from the Department of Natural Sciences from the Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, there were identified the following species of cultivated plants, which through specific applied technologies can pollute waters in the Black Sea basin. These are presented in Table 2.

Ref no	Species	Scientific name
1	Penners	Cansicum annuum I
2	Apricot tree	Armeniaca vulgaris Lam Sin
2	Apricot dec	Prunus armoniaca I
3	Fiber hemp	Cannabis sativa I
3	Strawberrie plant	Eragaria viridis I
5	Potato	Solanum tuberosum I
6	Onion	Alliun cong I
7	Cherry tree	Prunus avium I
8	Beans	Phaseolus vulgaris I
9	Sunflower	Holianthus annus I
10	Wheat	Triticum aestivum vulgare I
10	Flay for oil	I inum usitatissimum I
12	Lucerne	Medicago sativa I
12	Apple tree	Malus domestica
13	Pea	Pisum sativum I
15	Millet	Panicum miliaceum I
16	Nectarines	Prunus persica (I) Batsch var nucipersica
10	Walnut	Iuolans regia I
18	Grain rice	Orvza sativa I
10	Barley	Hordeum vulgare I
20	Oats	Avena sativa L
20	Pear tree	Pyrus communis L
22	Melons	Citrullus lanatus (Thunh)
23	Peach tree	Prunus persica L
23	Maize	Zea mays L
25	Plum tree	Prunus domestica L
26	Rapeseed	Brassica napus L.
27	Rve	Secale cereale L
28	Beets	Beta vulgaris L.
29	Soy	Glicine hispida
30	Sorghum	Sorghum bicolor (L.) Moench ssp. bicolor
31	Tomatoes	Lycopersicon esculentum Mill.
		Solanum lycopersicum L. var. lycopersicum
32	Triticale	Triticum aestivum vulgare x Secale cereale L.
33	Tobacco	Nicotiana tabacum L.
34	Garlic	Allium sativum L.
35	Cabbage	Brassica oleracea L. Var. capitata
36	Vine and vineyards	Vitis vinifera L.
37	Sour cherry tree	Prunus cerasus L.

Table 2. Plant species identified to be cultivated in the Black Sea basin

Of these, the most common are: wheat, maize, sunflower, canola, peach, nectarine, apricot, cherry and sour cherry.

Pesticides identified as being most frequently used are shown in Table 3. It is noted that these pesticides are not included in groups I and II of toxicity.

Table 3.	Pesticides	used on	Dobrogea ⁵	's crops
1 4010 01	I coureiaco	abea on	DODIOLOG	5 61 6 6 5

Ref.	The main	Active substance	The spectrum of activity	Crops that
no	culture to		1	can also be
	which it			applied
	applies			pesticide
	pesticide			1
1	Wheat	tifensulfuron metil	Dicotyledonous weeds	Barley
		+ tribenuron metil		
2	Wheat	2,4D	Bromus sp., Agropyron	Barley
			repens, Apera spica-venti, Sinapis	
			arvensis, Thlaspi arvense.	
3	Wheat	Lambda-cihalotrin	Aphids, thrips, straw's red worm,	Barley
			slabbering beetle, cereals' flies	
4	Corn	Lambda-cihalotrin	Tanymecus dilaticollis Gyll	Sunflower
5	Rape	Lambda-cihalotrin	Phyllotreta atra, Phyllotreta	
			nemorum and Psylliodes	
			chrysocephala, Ceuthorrynchus napi	
			și Ceuthorrynchus assimillis, Athalia	
			rosae, Meligethes aeneus,	
			Brevicoryne brasicae, Pieris	
			brassicae L., Mamestra brassicae	
6	Wheat	propoxicarbazon-	Bromus sp., Agropyron	
		sodium	repens, Apera spica-venti, Sinapis	
			arvensis, Thlaspi arvense.	
7	Fruit trees	ammonium	Dicotyledonous and	Vineyard,
		glufosinate	monocotyledonous annual and	Rice
			perennial weeds	
8	Corn	isoxaflutol +	Amaranthus spp., Ambrosia spp.,	
		tiencarbazon-metil	Anthemis arvensis, Atriplex patula,	
		+ ciprosulfamide	Capsella bursa-pastoris,	
			Chenopodium spp., Cirsium arvense	
			din samanta, Datura spp., Galinsoga	
			parviflora, Galium aparine,	
			samulastra de Helianthus annuus,	
			Lamium purpureum, Matricaria spp.,	
			Plantago major, Polygonum spp.,	
			Portulaca oleracea, Sysimbrium	
			officinale, Solanum nigrum, Stelaria	
			media, Thlaspi arvense, Avena fatua,	
			Digitaria spp., Echinochloa	
			spp., Panicum spp., Setaria	
			spp., Sorghum halepense from seed	
9	Wheat	fluroxipir - meptil	Capsella bursa-pastoris, Fumaria sp,	Barley,
			Galium aparine, Polygonum	Field corn
			convolvulus, Polygonum persicaria,	
			Veronica officinalis	

10	Cereals	Bromadiolon	Field mouse, forest mouse, house	Fruit trees,
			mouse	nursery
				trees

		Category	Where to use
	Product/active substance		
1	AGROXIN (Fosfura de aluminiu)	Rodenticides Molluscocides Repellent	Storages of agricultural products for gassing stored agricultural products: Sythophilus spp., Tribolium confusum, Oryzaephilus surinamensis, Siltrotoga cerealella, Ephestia kuehniella
2	DELICIA GASTOXIN (Fosfura de aluminiu)	Rodenticides Molluscocides Repellent	Storages of agricultural products for gassing stored agricultural products
3	DICARZOL 50 SP (Formetanate)	Insecticides	Field and greenhouses eggplants and tomatoes to combat tobacco thrips and common red mite
4	MAGTOXIN TABLETS (fosfura de magneziu)	Insecticides	Stored cereals
5	MEMENTO (Fenbutatin oxid)	Acaricides	Apple - red mite of trees; Soy and grapevine - common red spider
6	PHOSTOXIN (fosfura de aluminiu)	Insecticides	Storages of agricultural products for gassing stored agricultural products
7	QUICKPHOS-UP (Fosfura de aluminiu)	Insecticides	Main pests of stored cereals and of weevil at bean
8	VYDATE 10 G, VYDATE 10 L (oxamil)	Nematocides Disinfectants	Greenhouses and solariums tomatoes - the root's galicole nematode, greenhouse whitefly (larvae), <i>Solanaceae</i> mining bite; greenhouses and solariums cucumbers - tobacco thrips

Table 4. Pesticides of Group I of toxicity used in Romania

Pesticides from Group I of toxicity are highly toxic to humans and animals, for which treatments are performed by specialized and certificated teams that operate with those products, equipped with standardized plant protection equipments and with first aid kits.

Applied according to indicated norms they destroy pests and can be used in any space that provides a correct treatment (silos, warehouses, containers), provided perfect precincts isolation and respecting the distance from the centers crowded with people and animals, and strict compliance with the recommended concentration. The final residual products are decomposing into equilibrium metabolites, being harmless for environment.

It is recommended their use in small doses, in order to not reach the groundwater.

The pesticides from Group II of toxicity are recommended to be used in low controlled doses, in order not to get into groundwater.

It is totally forbidden in farms to eliminate voluntarily waste and pesticide residues in ditches, sewers, surface water or farmland coming from excess spray liquid, washing machines, loss of spraying liquid during their supply or during technological operations, the unevenness distribution losses, packaging and containers that still contain pesticides which are discarded or improperly stored, liquid waste from baths immersion or bathing sheep, leaks from broken or cracked packages or containers, pesticides eliminated by expiration date.

Regarding the pollinating honeybees, billions of bees are dying in Europe and the bee population decreased considerably below the necessary number for the crops pollination, and in United States, in California for example - the largest food producer in USA - beekeepers lost 40% of hives each year.

	Product/		
	active substance	Category	Where to use
1	AFALON 50 SC		
	(linuron)	Herbicide	Potato, sunflower, corn - Dicotyledonous annual weeds
2	ALERT		Wheat, barley, rape - foliar diseases, spike diseases, Phoma
	(Carbendazim,		lingam, Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria
	Flusilazol)	Fungicide	sp., Erysiphe-graminis
3	ALLEGRO	Fungicide	Wheat, barley - complex of foliar diseases
4	BARCIAN D	Defolianț	
	OUAT	and	
	QUAI	decsicant	Potato
5			
	BASTA 14 SL		Rice - desicant; vineyards and fruit trees - Dicotyledonous and
		Herbicide	monocotyledonous annual and perennial weeds
6			Wheat and barley – Septoria spp, Puccinia spp, Erysiphe ssp.,
	CAPALO		Fusarium spp, Helminthosporium spp, Pyrenophora spp,
		Fungicide	Rhynchosporium secale;
7			Wheat and barley - foliar and spike diseases – Septoria spp,
	COSMOS 250 FS		Puccinia spp, Erysiphe ssp., Fusarium spp, Helminthosporium
		Fungicide	spp, Pyrenophora spp, Rhynchosporium secale;
8			Wheat and barley - foliar and spike diseases – Septoria spp,
	DUETT ULTRA		Puccinia spp, Erysiphe ssp., Fusarium spp, Helminthosporium
		Fungicide	spp, Pyrenophora spp, Rhynchosporium secale;
9	DURSBAN 480		Potato – Leptinotarsa decemlineata; wheat – Eurygaster
	FC		integriceps., beets - Bothynoderes punctiventris, Mamestra
		Insecticide	brassicae, Brevicoryne brassicae, vineyards - Lobesia botrana
10		Rodenticides	
	KORIT 420 FS	Molluscocid	
		es, Repellent	Corn - bird repellent
11	LANNATE 20		Helicoverpa armigera, Trialeurodes vaporariorum, Aphys
	SL LANNATE		pomi, Cydia pomonella, Cydia funebrana, Euritoma schreineri,
	25 WP		Hoplocampa spp. Psilla spp., Myzodes persicae, Cydia
	23 711	Insecticide	molesta, Rhagoletis cerasi, Hyphantria cunea

Table 5. Pesticides from Group II of toxicity used in Romania

12	LINUREX 50 SC	Herbicide	Potato, onion, sunflower, carrot, celery - Dicotyledonous and monocotyledonous annual weeds
13	MESUROL 500		
	FS	Insecticide	Corn - bird repellent, Oscinella frit
14	OPERA	Fungicide	Corn – Helminthosporium spp.
15			Wheat and barley - foliar and spike diseases - Septoria spp,
	OPERA MAX		Puccinia spp, Erysiphe ssp., Fusarium spp, Helminthosporium
		Fungicide	spp, Pyrenophora spp, Rhynchosporium secale;
16			Wheat and barley - foliar and spike diseases - Septoria spp,
	OSIRIS		Puccinia spp, Erysiphe ssp., Fusarium spp, Helminthosporium
		Fungicide	spp, Pyrenophora spp, Rhynchosporium secale;
17	PHOSFOROL	Insecticide	Main pests of stored cereals
18	PONCHO SOL		
	510 FS	Insecticide	Corn, sunflower – Agriotes sp., Tanymecus dilaticollis
19	REGLONE		Potato, sunflower, carrot, onion, rice, rape, beetroot - weeds,
	FORTE	Desiccant	desicant; vita de vie - desicant
20			Wheat, rye, triticale and barley - foliar and spike diseases -
	DUDDIC		Septoria spp, Puccinia spp, Erysiphe ssp., Fusarium spp,
	KUDKIC		Helminthosporium spp, Pyrenophora spp, Rhynchosporium
		Fungicide	secale;
21	SOPRANO 125		Wheat, barley - Wheat and barley - foliar and spike diseases –
	SC	Fungicide	Puccinia spp, Erysiphe ssp., Fusarium spp.
22	TANCO SUDED		Wheat, barley - complex of foliar diseases; Sugar beet -
	TANGO SUPER	Fungicide	Cercospora beticola, Peronospora farinosa f.sp. betae

We are currently seeing an "ecological holocaust" that puts us all in jeopardy: without pollination, most plants and a third of our food are in danger.

Attention should be drawn regarding the use of pesticides that are toxic to bees and other pollinators. It comes to the use of sunflower seed treated with insecticides from neonicotinoids class after the temporary authorizations issued by the Ministry of Agriculture and Rural Development - Romania in 2015. There is a deep concern about the overall state of beekeeping in Romania, especially after the state of calamity that characterized 2014, that are likely to enter in a decline process.

It is considered that the additional risk factors such as the use of neonicotinoids for seeds treatments of canola, sunflower and maize represents a danger that beekeeping cannot afford given that this plant treatment is banned in the European Union. The position of Romanian associations and federations with beekeeping profile was from the beginning in support of Romania's alignment to current trends in Europe, favoring agricultural production methods that take into account environment and pollinators.

Severe effects can occur in the practice of using neonicotinoids in specific season farming for sunflower and maize crops. Sowing seed treated with neonicotinoids in farmlands within flying range of bees can levitate contaminated dust that lay on the ground; the first rain can incorporated them in water puddles in which honeybees sometimes drink. The existence of corn and sunflower seedlings already occurred in the 2-3-leaf can result in the acute toxicity of the bees.

Sublethal effects caused by the bees harvest of treated oilseed rape nectar and pollen attest depopulation with various amplitudes, due the lost of honeybees, that cannot manage their return to the hive due to the damaged of their memory and navigation capacity.

Involutions of bee colonies in periods that follow the treated oilseed rape harvest can be noticed due to reduced capacity of brood growth, the damage of communication between bees and of the immune system for the whole superorganism represented the bee colony. Consumption of honey and bee bread by bees may extend this situation for relatively long periods.

CONCLUSIONS

After the analysis performed by specialists from the Department of Natural Sciences from the Faculty of Natural and Agricultural Sciences, "Ovidius" University of Constanta, Romania, a total of 37 species of cultivated plants, possibly polluting the waters of the Black Sea basin, have been identified.

Eight pesticides have been identified belonging to the Group I of toxicity used especially in deposits, but also for tomatoes from greenhouses and solariums - galicol nematode of roots, greenhouse whitefly (larvae), *solanaceae* mining bite; greenhouses and solariums cucumber - tobacco thrips.

In Romania, a Code of Good Agricultural Practice was implemented. Thus, products used in plant protection are classified into two categories: products from Group III and IV of toxicity (mildly toxic) and products from Group I and II of toxicity (highly toxic and very toxic), used only by specialized and authorized personnel. 22 pesticides belonging to Group II of toxicity were identified, used mainly to control diseases, pests and weeds, for all of the 37 species of agricultural plants, whose technologies were identified as potentially polluted of Black Sea basin waters.

The position of Romanian associations and federations with beekeeping profile was from the beginning in support of Romania's alignment to current trends in Europe, favoring agricultural production methods that take into account environment and pollinators. Serious effects can occur by using neonicotinoids in the practice of specific farming for sunflower and maize crops.

REFERENCES

A. Bavaru, Rodica Bercu, Protejarea mediului, a resurselor sale - o sansa pentru viata, Editura Arhiepiscopiei Tomisului, Constanta, 2014

2. F. Vosniakos, T. Almpanis, G. Vasilikiotis, K. Diamantopoulos, E. Christoforidou, A. Karida, K. Zavlaris, P. Metzelou, D. Lampropoulou, 2007, Evaluation of transboundary pollution levels in the Axios river (Greece, Former Yugoslavian Republic of Macedonia) - direct and indirect impacts on man and environment, Journal of Environmental Protection and Ecology 8, No 3, 526–534, 2007

3. A. Paparisto, E. Halimi, E. Hamzaraj, O. Laknori, E. K, 2010, Risk assessment for correspondence. Identification of invasive insects in Albania and the assessment of

their potential impact to the country biodiversity, Journal of Environmental Protection and Ecology 11, No 1, 95–111, 2010

4. G. E. Budge, D. Garthwaite, A. Crowe, N. D. Boatman, K. S. Delaplane, M. A. Brown, H. H. Thygesen & S. Pietravalle, 2015- Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape, http://www.nature.com/; http://www.nature.com/articles/srep12574

5. Randy Oliver, 2012- Neonicotinoids: Trying to Make Sense of the Science, American Bee Journal, http://www.americanbeejournal.com/

6.***CODE OF GOOD PRACTICE FOR THE AGRICULTURAL FARMERS